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Abstract 

Designing solar photovoltaic (PV) layouts on irregular urban rooftops is a challenging 

combinatorial problem, complicated by shading, structural obstacles, and irradiance 

variability. Traditional metaheuristic techniques such as Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), and Simulated Annealing (SA) are often computationally 

intensive for high-dimensional layouts, while purely machine learning (ML)-based methods 

struggle to explore the vast solution space effectively. This work proposes a hybrid 

optimization framework that integrates GA, PSO, and SA with a Random Forest surrogate 

model, which approximates the irradiance-adjusted power generation landscape and guides 

efficient global exploration, with final solutions validated against the actual fitness function. 

Applied to rooftop datasets from Singapore, Rio de Janeiro, Nairobi, and Surakarta, the 

framework achieved more than 90% of the realistic maximum power output while 

significantly reducing computational demand. The surrogate model maintained R² values 

above 0.8, ensuring dependable estimations, and outperformed standalone algorithms and 

pure ML approaches, confirming the advantages of the hybrid strategy. 
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1. Introduction 

The rapid growth of urbanization has significantly increased the global demand for reliable 

and sustainable energy sources. As cities expand and populations rise, the pressure on 

existing centralized power infrastructure has intensified, often leading to higher energy 

consumption, transmission losses, and environmental degradation. In this context, solar 

photovoltaic (PV) systems have emerged as one of the most promising and viable solutions 

for decentralized power generation. By harnessing sunlight to produce electricity directly 

at the point of use—such as residential rooftops, commercial buildings, and community 

spaces—solar PV technology reduces dependency on conventional fossil-fuel-based power 
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plants. Moreover, it contributes to lowering greenhouse gas emissions, enhancing energy 

security, and promoting a cleaner, more resilient urban energy landscape [1]. Rooftop solar 

installations, in particular, play a pivotal role in meeting the escalating energy demands of 

rapidly growing urban and suburban areas. By utilizing otherwise underused rooftop spaces 

on residential, commercial, and institutional buildings, these systems enable the generation 

of clean and renewable electricity close to the point of consumption. This decentralized 

approach not only helps in reducing the burden on national power grids but also minimizes 

transmission and distribution losses commonly associated with centralized energy systems. 

Furthermore, rooftop solar power significantly contributes to the mitigation of greenhouse 

gas emissions by displacing electricity generated from fossil fuels, thereby promoting a 

transition toward a low-carbon and environmentally sustainable energy future [2]. 

However, designing efficient photovoltaic (PV) panel layouts on irregularly shaped urban 

rooftops presents a complex and multifaceted optimization challenge. Unlike large open 

fields with uniform surfaces, urban rooftops often vary significantly in geometry, 

orientation, and available installation area. Factors such as roof inclination, obstructions 

from HVAC units or water tanks, and shading effects caused by neighbouring buildings or 

vegetation further complicate the layout design. Additionally, variations in solar irradiance 

throughout the day and across different seasons introduce dynamic conditions that affect 

the overall energy yield. These interdependent variables render the problem highly 

nonlinear and combinatorial in nature, requiring advanced computational optimization 

techniques to determine the most efficient configuration that maximizes power generation 

while adhering to structural and spatial constraints [3]. 

Traditional metaheuristic algorithms, such as Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), and Simulated Annealing (SA), have been extensively utilized in 

solving a wide range of renewable energy and engineering design optimization problems. 

These algorithms are particularly effective in handling complex, nonlinear, and multi-

dimensional search spaces where conventional mathematical or deterministic optimization 

methods often fail to converge efficiently. In the context of renewable energy systems, they 

have been successfully applied to tasks such as optimizing the placement and sizing of solar 

panels, wind turbine configurations, energy storage management, and hybrid renewable 

system design. Their population-based and stochastic nature allows them to explore vast 

solution spaces and avoid local optima, making them well-suited for real-world engineering 

scenarios characterized by multiple conflicting objectives and dynamic constraints [4], [5]. 

For instance, Bhattacharjee and Bhattacharya [6] improved wind farm profitability using a 

modified Genetic Algorithm, while Bhattacharjee et al. [7] compared GA and Particle 

Swarm Optimization in optimizing the cost of wind power generation in India. Similarly, 

multi-objective GA frameworks have been effectively applied in complex mechanical 

design tasks such as cam optimization [8]. While these approaches demonstrate significant 

promise, they often become computationally expensive when extended to large-scale 

rooftop layout scenarios. 

On the other hand, purely machine learning–based methods, while proficient at modeling 

complex relationships and approximating performance landscapes, often exhibit limitations 

when applied to high-dimensional optimization problems. These methods rely heavily on 

training data to learn patterns and correlations, which may not always capture the full 

variability or dynamic nature of engineering design spaces. Consequently, their capacity to 
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explore vast and highly nonlinear solution domains is limited, as they primarily focus on 

prediction rather than exploration. This often leads to premature convergence toward 

locally optimal solutions rather than discovering the true global optimum. Furthermore, the 

performance of such models is sensitive to the quality and representativeness of the training 

dataset, and they may struggle to generalize effectively to unseen configurations. Therefore, 

while machine learning techniques offer valuable insights and predictive capabilities, their 

standalone application in complex optimization scenarios remains constrained without the 

integration of robust search-based strategies [9]. To overcome these limitations, hybrid 

optimization frameworks that integrate the exploratory capabilities of metaheuristic 

algorithms with the predictive intelligence of machine learning techniques have garnered 

significant research attention in recent years. Such hybrid approaches aim to leverage the 

complementary strengths of both paradigms—where metaheuristics efficiently explore vast 

and complex search spaces, while machine learning models enhance convergence speed 

and decision accuracy through data-driven learning.  

By enabling adaptive parameter tuning, surrogate modelling, and intelligent solution 

guidance, these methods can substantially reduce computational effort while improving 

optimization quality. In the context of renewable energy system design, particularly for 

solar photovoltaic layout optimization, these hybrid frameworks offer a promising avenue 

for achieving more accurate, reliable, and efficient solutions under varying environmental 

and structural constraints [10]. Surrogate modelling, in particular, serves as a powerful and 

efficient technique for approximating complex and computationally expensive fitness 

landscapes. Instead of directly evaluating the objective function through time-intensive 

simulations or detailed physical models, surrogate models—also known as meta-models or 

response surface models—create simplified mathematical representations that closely 

mimic the behaviour of the original system.  

Techniques such as Artificial Neural Networks (ANN), Gaussian Process Regression 

(GPR), Radial Basis Function (RBF) networks, and Support Vector Regression (SVR) are 

commonly employed to construct these models. By providing rapid estimations of solution 

quality, surrogate modelling enables optimization algorithms to significantly reduce 

computational cost while maintaining acceptable levels of accuracy. This balance between 

exploration efficiency and predictive precision makes surrogate-assisted optimization 

particularly valuable in renewable energy system design, where evaluating each potential 

configuration can otherwise be prohibitively time-consuming. 

In this study, we propose a novel hybrid optimization framework that synergistically 

combines multiple metaheuristic algorithms with a Random Forest–based surrogate model 

to achieve efficient and intelligent design of PV panel layouts on irregular and complex 

urban rooftops. The integration of metaheuristics—each contributing distinct search 

dynamics and exploration capabilities—ensures comprehensive coverage of the solution 

space, while the Random Forest surrogate model accelerates the evaluation process by 

accurately approximating the underlying performance landscape. This hybridization not 

only enhances the convergence rate but also maintains a high degree of solution precision, 

thereby addressing the computational challenges associated with detailed solar energy 

simulations.  
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Furthermore, the proposed framework is rigorously tested across diverse geographical 

regions characterized by varying climatic and architectural conditions, enabling a 

comprehensive assessment of its robustness, adaptability, and scalability. The results 

demonstrate that the framework can consistently achieve near-optimal configurations of PV 

panel layouts while significantly reducing computational effort, making it a promising 

approach for advancing sustainable urban energy planning and design. 

 

2. Objective Formulation 

We define the rooftop as a discrete 2D grid of dimension W×H. Each solar panel occupies 

either horizontal 2×1 or vertical 1×2 cells. Obstacles are predefined sets of unavailable 

cells.  

The objective is to maximize the daily energy yield: 

𝐹(𝐿) = ∑
𝑃

1000
𝑁
𝑖=1 ⋅

1

𝑇
∑ ∑ 𝐼𝑡(𝑥, 𝑦)(𝑥,𝑦)𝜖𝑆𝑖

 𝑇
𝑡=1                                                                        (1) 

where: 

 N = number of panels 

 P = panel wattage 

 T = time slots 

 It (x,y) = irradiance at cell (x,y) in slot t 

 Si = set of cells occupied by panel i 

In this work, annual profit is defined as the difference between the total revenue earned 

from selling the generated electricity and the total costs incurred in setting up, operating, 

and maintaining the wind farm over its operational lifetime, normalized on an annual basis. 

The revenue depends on the quantity of electricity generated throughout the year and the 

prevailing energy tariff or sale price per unit of electricity.  

The cost component includes a wide spectrum of expenditures such as capital investment 

(covering turbine procurement, land development, foundation work, electrical connections, 

and installation), as well as recurring costs like operation, maintenance, and administrative 

overheads. 

 

3. Optimization Algorithm 

The optimization of photovoltaic (PV) panel layouts on irregular urban rooftops is an 

inherently complex and high-dimensional problem, characterized by nonlinearity, 

multimodality, and multiple conflicting objectives such as maximizing solar energy capture, 

minimizing shading losses, and ensuring spatial compactness. To effectively navigate this 

complex design space, the present study employs a set of hybrid metaheuristic algorithms—

specifically, Genetic Algorithm with Machine Learning assistance (GA-ML), Particle 
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Swarm Optimization with Machine Learning assistance (PSO-ML), and Simulated 

Annealing with Machine Learning assistance (SA-ML).  

 

Each of these algorithms is enhanced through integration with a Random Forest–based 

surrogate model, enabling efficient fitness approximation and accelerating the convergence 

process while maintaining solution accuracy. 

 

3.1 Genetic Algorithm with Machine Learning Assistance (GA-ML) 

The Genetic Algorithm (GA) is a population-based stochastic optimization technique 

inspired by the principles of natural evolution and genetic inheritance. In the proposed GA-

ML framework, an initial population of candidate PV layouts is generated, each represented 

as a string encoding the occupancy grid and panel arrangement. The fitness of each 

individual—reflecting the total energy yield adjusted by shading losses and the density 

bonus—is estimated using the Random Forest surrogate model instead of computationally 

expensive simulation evaluations. 

 

The algorithm proceeds through iterative generations, employing tournament selection to 

identify high-quality parent solutions. Crossover operations are applied to exchange layout 

features between parent pairs, encouraging exploration of new regions in the search space, 

while mutation introduces small random changes in panel positioning to maintain genetic 

diversity and prevent premature convergence. The surrogate-assisted evaluation enables 

faster iteration cycles, significantly reducing computation time. The evolutionary process 

continues until a termination criterion—such as a maximum number of generations or a 

negligible change in fitness—is satisfied. The GA-ML algorithm excels in maintaining a 

balance between exploration and exploitation, making it particularly effective for highly 

discontinuous design spaces such as irregular rooftops. 

 

3.2 Particle Swarm Optimization with Machine Learning Assistance (PSO-ML) 

The Particle Swarm Optimization (PSO) algorithm is inspired by the collective foraging 

behaviour of birds or fish, where a group of agents—referred to as particles—moves 

through the search space to find optimal solutions. In the PSO-ML framework, each particle 

represents a potential PV layout configuration, characterized by its position and velocity 

vectors within the solution domain. 

 

At each iteration, particles update their positions by considering three influences: their 

personal best position, the global best position among all particles, and a random 

perturbation term that promotes exploration. The fitness evaluation of each particle is 

carried out using the trained Random Forest surrogate model, which provides rapid 

estimations of energy yield and layout efficiency. This replacement of expensive direct 

simulations with surrogate-based evaluations drastically enhances computational speed, 

allowing for more iterations and better refinement of candidate layouts. The PSO-ML 

algorithm effectively converges toward near-optimal configurations by harmonizing global 

exploration with local exploitation, proving particularly robust for continuous and nonlinear 

optimization problems. 

 

3.3 Simulated Annealing with Machine Learning Assistance (SA-ML) 
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The Simulated Annealing (SA) algorithm is a probabilistic optimization technique modeled 

after the annealing process in metallurgy, where controlled cooling allows materials to reach 

a low-energy crystalline state. The SA-ML variant adopted in this study introduces machine 

learning assistance through surrogate-based evaluation.  

 

Beginning with an initial PV layout, the algorithm iteratively generates perturbed 

configurations by modifying panel placements or orientations. Each new layout is evaluated 

by the Random Forest surrogate model to estimate its “energy,” corresponding to the 

negative of the objective function value. A temperature parameter governs the acceptance 

probability of worse solutions, allowing the algorithm to escape local minima during early 

iterations. As the temperature gradually decreases according to a predefined cooling 

schedule, the acceptance of inferior solutions becomes less frequent, guiding the search 

toward convergence. The use of surrogate-assisted energy evaluation ensures a substantial 

reduction in computational cost while preserving the probabilistic exploration behavior of 

classical SA. 

 

3.4 Role of the Surrogate Model in Hybridization 

Across all three hybrid algorithms, the Random Forest surrogate model serves as a central 

component, approximating the fitness landscape based on a pre-trained dataset of random 

and greedy PV layouts. The model inputs include the occupancy grid encoding, irradiance 

map, and panel count, which collectively characterize spatial and environmental variations. 

By accurately predicting layout performance, the surrogate model substitutes costly direct 

solar energy simulations, enabling thousands of evaluations within seconds. This 

integration ensures that the hybrid algorithms maintain high computational efficiency 

without sacrificing optimization accuracy. 

 

3.5 Comparative Advantage and Overall Workflow 

The hybridization of metaheuristics with machine learning enables the proposed framework 

to capitalize on the exploratory strength of evolutionary search and the predictive efficiency 

of data-driven learning. GA-ML provides superior diversity and adaptability, PSO-ML 

ensures rapid convergence through collective learning, and SA-ML offers resilience against 

local optima via probabilistic acceptance mechanisms. Collectively, these algorithms 

constitute a versatile toolkit capable of efficiently identifying near-optimal PV layouts 

across a range of complex rooftop geometries and environmental conditions. 

 

The overall workflow includes (i) dataset generation from random and greedy layouts, (ii) 

surrogate model training, (iii) hybrid optimization using GA-ML, PSO-ML, and SA-ML, 

and (iv) performance comparison based on energy yield, layout compactness, and 

computational efficiency. 

 

 

4. Results and Discussion 

 

Experiments conducted on Singapore, Rio de Janeiro, Nairobi, and Surakarta demonstrate 

the effectiveness of the proposed hybrid framework. The ML surrogate consistently 

achieved an R² value above 0.90 with low RMSE, confirming its reliability in 
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approximating layout fitness and significantly reducing computational cost. All three hybrid 

algorithms (GA-ML, PSO-ML, SA-ML) converged faster than their standalone 

counterparts, highlighting the advantage of surrogate-assisted optimization. The efficiency 

of each algorithm was calculated using the expression: 

𝜂 =
𝐹′(𝐿)

0.9⋅𝐹𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
× 100%                                                                                                  (2) 

 

where F′(L) denotes the actual power output obtained from the optimized layout, and 

Ftheoretical represents the maximum possible power generation under ideal rooftop conditions. 

The denominator is scaled by 0.9 to account for realistic system-level derating factors such 

as inverter losses, wiring losses, and environmental effects. Thus, the efficiency metric η 

quantifies how close the optimized solution comes to achieving 90% of the theoretical 

maximum, providing a practical benchmark for performance evaluation. Results show that 

GA-ML achieved the highest performance, with efficiency values above 99.6% across all 

cities. SA-ML also performed strongly, achieving ~97.8–97.9% efficiency, while PSO-ML 

was comparatively less effective, with efficiency around 86–88%. City-wise performance 

indicates consistent robustness of GA-ML and SA-ML, with Singapore, Rio de Janeiro, and 

Surakarta showing slightly higher efficiency than Nairobi. These findings confirm that 

integrating the surrogate model with metaheuristic algorithms not only accelerates 

convergence but also enables near-optimal solar PV layout designs across diverse 

geographical and climatic conditions. 

 

 

Fig. 1 Result for Singapore for GA-ML 



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025 
 

                                                                                                                                 Pag. 70 / 444 
Article’s total number of pages: 16 

 

Fig. 2 Result for Singapore for PSO-ML 

 

Fig. 3 Result for Singapore for SA-ML 
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Fig. 4 Result for Rio De Janeiro for GA-ML 

 

Fig. 5 Result for Rio De Janeiro for PSO-ML 
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Fig. 6 Result for Rio De Janeiro for SA-ML 

 

Fig. 7 Result for Nairobi for GA-ML 

 



Journal of Information Systems & Operations Management, Vol. 19.2, December 2025 
 

                                                                                                                                 Pag. 73 / 444 
Article’s total number of pages: 16 

 

Fig. 8 Result for Nairobi for PSO-ML 

 

Fig. 9 Result for Nairobi for SA-ML 
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Fig. 10 Result for Surakarta for GA-ML 

 

Fig. 11 Result for Surakarta for PSO-ML 
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Fig. 12 Result for Surakarta for SA-ML 

 

City GA+ML 

Efficiency 

(%) 

PSO+ML Efficiency 

(%) 

SA+ML Efficiency 

(%) 

Singapore 99.71        87.74     97.90 

Rio De Janeiro 99.74      87.75     97.72 

Nairobi 99.61      86.44     97.84  

Surakarta 99.72 87.91 97.91 

Table 1: Comparison of Results 

 

The challenge of optimizing solar photovoltaic (PV) panel layouts on irregular rooftops is 

a complex combinatorial problem. Genetic Algorithms (GA) are known for their excellent 

global search capabilities, making them well-suited for maximizing the number of panels 

to achieve full capacity. In contrast, Particle Swarm Optimization (PSO) can be sensitive to 

parameter adaptation, which may lead to stagnation if not handled with adaptive inertia. 

Simulated Annealing (SA) is better suited for navigating complex, irregular rooftops and 

obstacle-laden environments, though this often comes at the expense of a slower 

convergence speed.  

 

Given these trade-offs, a hybrid GA-SA solution could prove to be the most practical 

approach. This combination leverages GA’s robust global exploration while using SA’s 

superior ability to find good solutions in difficult, constrained spaces. The practical 

relevance of such an optimized system is significant, as efficient solar rooftop 
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configurations translate to enhanced household-level energy independence and are crucial 

for helping countries worldwide meet their ambitious renewable energy goals. 

 

 

4. Conclusion 

This study demonstrates that integrating machine learning surrogate models with 

metaheuristic algorithms provides a highly efficient approach for solar photovoltaic rooftop 

layout optimization. The surrogate model accurately predicted layout fitness with R² ≥ 0.90, 

enabling faster convergence and reducing computational effort compared to standalone 

optimization methods. Among the hybrid frameworks, Genetic Algorithm with surrogate 

learning consistently achieved near-optimal performance, with efficiency exceeding 99.6% 

across diverse locations such as Singapore, Rio de Janeiro, Nairobi, and Surakarta. 

Simulated Annealing with surrogate support also performed strongly, while Particle Swarm 

Optimization yielded comparatively lower efficiency. The proposed framework effectively 

balances accuracy and computational efficiency, making it well-suited for large-scale urban 

PV planning. By approaching practical upper limits of rooftop PV efficiency, this work 

highlights the potential of surrogate-assisted optimization in accelerating renewable energy 

deployment and contributing to sustainable energy transition.  
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