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Abstract

Designing solar photovoltaic (PV) layouts on irregular urban rooftops is a challenging
combinatorial problem, complicated by shading, structural obstacles, and irradiance
variability. Traditional metaheuristic techniques such as Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), and Simulated Annealing (SA) are often computationally
intensive for high-dimensional layouts, while purely machine learning (ML)-based methods
struggle to explore the vast solution space effectively. This work proposes a hybrid
optimization framework that integrates GA, PSO, and SA with a Random Forest surrogate
model, which approximates the irradiance-adjusted power generation landscape and guides
efficient global exploration, with final solutions validated against the actual fitness function.
Applied to rooftop datasets from Singapore, Rio de Janeiro, Nairobi, and Surakarta, the
framework achieved more than 90% of the realistic maximum power output while
significantly reducing computational demand. The surrogate model maintained R? values
above 0.8, ensuring dependable estimations, and outperformed standalone algorithms and
pure ML approaches, confirming the advantages of the hybrid strategy.
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1. Introduction

The rapid growth of urbanization has significantly increased the global demand for reliable
and sustainable energy sources. As cities expand and populations rise, the pressure on
existing centralized power infrastructure has intensified, often leading to higher energy
consumption, transmission losses, and environmental degradation. In this context, solar
photovoltaic (PV) systems have emerged as one of the most promising and viable solutions
for decentralized power generation. By harnessing sunlight to produce electricity directly
at the point of use—such as residential rooftops, commercial buildings, and community
spaces—solar PV technology reduces dependency on conventional fossil-fuel-based power
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plants. Moreover, it contributes to lowering greenhouse gas emissions, enhancing energy
security, and promoting a cleaner, more resilient urban energy landscape [1]. Rooftop solar
installations, in particular, play a pivotal role in meeting the escalating energy demands of
rapidly growing urban and suburban areas. By utilizing otherwise underused rooftop spaces
on residential, commercial, and institutional buildings, these systems enable the generation
of clean and renewable electricity close to the point of consumption. This decentralized
approach not only helps in reducing the burden on national power grids but also minimizes
transmission and distribution losses commonly associated with centralized energy systems.
Furthermore, rooftop solar power significantly contributes to the mitigation of greenhouse
gas emissions by displacing electricity generated from fossil fuels, thereby promoting a
transition toward a low-carbon and environmentally sustainable energy future [2].
However, designing efficient photovoltaic (PV) panel layouts on irregularly shaped urban
rooftops presents a complex and multifaceted optimization challenge. Unlike large open
fields with uniform surfaces, urban rooftops often vary significantly in geometry,
orientation, and available installation area. Factors such as roof inclination, obstructions
from HVAC units or water tanks, and shading effects caused by neighbouring buildings or
vegetation further complicate the layout design. Additionally, variations in solar irradiance
throughout the day and across different seasons introduce dynamic conditions that affect
the overall energy yield. These interdependent variables render the problem highly
nonlinear and combinatorial in nature, requiring advanced computational optimization
techniques to determine the most efficient configuration that maximizes power generation
while adhering to structural and spatial constraints [3].

Traditional metaheuristic algorithms, such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), and Simulated Annealing (SA), have been extensively utilized in
solving a wide range of renewable energy and engineering design optimization problems.
These algorithms are particularly effective in handling complex, nonlinear, and multi-
dimensional search spaces where conventional mathematical or deterministic optimization
methods often fail to converge efficiently. In the context of renewable energy systems, they
have been successfully applied to tasks such as optimizing the placement and sizing of solar
panels, wind turbine configurations, energy storage management, and hybrid renewable
system design. Their population-based and stochastic nature allows them to explore vast
solution spaces and avoid local optima, making them well-suited for real-world engineering
scenarios characterized by multiple conflicting objectives and dynamic constraints [4], [5].
For instance, Bhattacharjee and Bhattacharya [6] improved wind farm profitability using a
modified Genetic Algorithm, while Bhattacharjee et al. [7] compared GA and Particle
Swarm Optimization in optimizing the cost of wind power generation in India. Similarly,
multi-objective GA frameworks have been effectively applied in complex mechanical
design tasks such as cam optimization [8]. While these approaches demonstrate significant
promise, they often become computationally expensive when extended to large-scale
rooftop layout scenarios.

On the other hand, purely machine learning—based methods, while proficient at modeling
complex relationships and approximating performance landscapes, often exhibit limitations
when applied to high-dimensional optimization problems. These methods rely heavily on
training data to learn patterns and correlations, which may not always capture the full
variability or dynamic nature of engineering design spaces. Consequently, their capacity to
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explore vast and highly nonlinear solution domains is limited, as they primarily focus on
prediction rather than exploration. This often leads to premature convergence toward
locally optimal solutions rather than discovering the true global optimum. Furthermore, the
performance of such models is sensitive to the quality and representativeness of the training
dataset, and they may struggle to generalize effectively to unseen configurations. Therefore,
while machine learning techniques offer valuable insights and predictive capabilities, their
standalone application in complex optimization scenarios remains constrained without the
integration of robust search-based strategies [9]. To overcome these limitations, hybrid
optimization frameworks that integrate the exploratory capabilities of metaheuristic
algorithms with the predictive intelligence of machine learning techniques have garnered
significant research attention in recent years. Such hybrid approaches aim to leverage the
complementary strengths of both paradigms—where metaheuristics efficiently explore vast
and complex search spaces, while machine learning models enhance convergence speed
and decision accuracy through data-driven learning.

By enabling adaptive parameter tuning, surrogate modelling, and intelligent solution
guidance, these methods can substantially reduce computational effort while improving
optimization quality. In the context of renewable energy system design, particularly for
solar photovoltaic layout optimization, these hybrid frameworks offer a promising avenue
for achieving more accurate, reliable, and efficient solutions under varying environmental
and structural constraints [10]. Surrogate modelling, in particular, serves as a powerful and
efficient technique for approximating complex and computationally expensive fitness
landscapes. Instead of directly evaluating the objective function through time-intensive
simulations or detailed physical models, surrogate models—also known as meta-models or
response surface models—create simplified mathematical representations that closely
mimic the behaviour of the original system.

Techniques such as Artificial Neural Networks (ANN), Gaussian Process Regression
(GPR), Radial Basis Function (RBF) networks, and Support Vector Regression (SVR) are
commonly employed to construct these models. By providing rapid estimations of solution
quality, surrogate modelling enables optimization algorithms to significantly reduce
computational cost while maintaining acceptable levels of accuracy. This balance between
exploration efficiency and predictive precision makes surrogate-assisted optimization
particularly valuable in renewable energy system design, where evaluating each potential
configuration can otherwise be prohibitively time-consuming.

In this study, we propose a novel hybrid optimization framework that synergistically
combines multiple metaheuristic algorithms with a Random Forest—based surrogate model
to achieve efficient and intelligent design of PV panel layouts on irregular and complex
urban rooftops. The integration of metaheuristics—each contributing distinct search
dynamics and exploration capabilities—ensures comprehensive coverage of the solution
space, while the Random Forest surrogate model accelerates the evaluation process by
accurately approximating the underlying performance landscape. This hybridization not
only enhances the convergence rate but also maintains a high degree of solution precision,
thereby addressing the computational challenges associated with detailed solar energy
simulations.
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Furthermore, the proposed framework is rigorously tested across diverse geographical
regions characterized by varying climatic and architectural conditions, enabling a
comprehensive assessment of its robustness, adaptability, and scalability. The results
demonstrate that the framework can consistently achieve near-optimal configurations of PV
panel layouts while significantly reducing computational effort, making it a promising
approach for advancing sustainable urban energy planning and design.

2. Objective Formulation

We define the rooftop as a discrete 2D grid of dimension WxH. Each solar panel occupies
either horizontal 2x1 or vertical 1x2 cells. Obstacles are predefined sets of unavailable
cells.

The objective is to maximize the daily energy yield:

P 1
F(L) = Ilvzlm ) ;Zg;lZ(x,y)ESi Ie(x,y) (1)

where:
N = number of panels
P = panel wattage
T = time slots
I (x,y) = irradiance at cell (x,y) in slot t
S; = set of cells occupied by panel i

In this work, annual profit is defined as the difference between the total revenue earned
from selling the generated electricity and the total costs incurred in setting up, operating,
and maintaining the wind farm over its operational lifetime, normalized on an annual basis.
The revenue depends on the quantity of electricity generated throughout the year and the
prevailing energy tariff or sale price per unit of electricity.

The cost component includes a wide spectrum of expenditures such as capital investment
(covering turbine procurement, land development, foundation work, electrical connections,
and installation), as well as recurring costs like operation, maintenance, and administrative
overheads.

3. Optimization Algorithm

The optimization of photovoltaic (PV) panel layouts on irregular urban rooftops is an
inherently complex and high-dimensional problem, characterized by nonlinearity,
multimodality, and multiple conflicting objectives such as maximizing solar energy capture,
minimizing shading losses, and ensuring spatial compactness. To effectively navigate this
complex design space, the present study employs a set of hybrid metaheuristic algorithms—
specifically, Genetic Algorithm with Machine Learning assistance (GA-ML), Particle
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Swarm Optimization with Machine Learning assistance (PSO-ML), and Simulated
Annealing with Machine Learning assistance (SA-ML).

Each of these algorithms is enhanced through integration with a Random Forest—based
surrogate model, enabling efficient fitness approximation and accelerating the convergence
process while maintaining solution accuracy.

3.1 Genetic Algorithm with Machine Learning Assistance (GA-ML)

The Genetic Algorithm (GA) is a population-based stochastic optimization technique
inspired by the principles of natural evolution and genetic inheritance. In the proposed GA-
ML framework, an initial population of candidate PV layouts is generated, each represented
as a string encoding the occupancy grid and panel arrangement. The fitness of each
individual—reflecting the total energy yield adjusted by shading losses and the density
bonus—is estimated using the Random Forest surrogate model instead of computationally
expensive simulation evaluations.

The algorithm proceeds through iterative generations, employing tournament selection to
identify high-quality parent solutions. Crossover operations are applied to exchange layout
features between parent pairs, encouraging exploration of new regions in the search space,
while mutation introduces small random changes in panel positioning to maintain genetic
diversity and prevent premature convergence. The surrogate-assisted evaluation enables
faster iteration cycles, significantly reducing computation time. The evolutionary process
continues until a termination criterion—such as a maximum number of generations or a
negligible change in fitness—is satisfied. The GA-ML algorithm excels in maintaining a
balance between exploration and exploitation, making it particularly effective for highly
discontinuous design spaces such as irregular rooftops.

3.2 Particle Swarm Optimization with Machine Learning Assistance (PSO-ML)

The Particle Swarm Optimization (PSO) algorithm is inspired by the collective foraging
behaviour of birds or fish, where a group of agents—referred to as particles—moves
through the search space to find optimal solutions. In the PSO-ML framework, each particle
represents a potential PV layout configuration, characterized by its position and velocity
vectors within the solution domain.

At each iteration, particles update their positions by considering three influences: their
personal best position, the global best position among all particles, and a random
perturbation term that promotes exploration. The fitness evaluation of each particle is
carried out using the trained Random Forest surrogate model, which provides rapid
estimations of energy yield and layout efficiency. This replacement of expensive direct
simulations with surrogate-based evaluations drastically enhances computational speed,
allowing for more iterations and better refinement of candidate layouts. The PSO-ML
algorithm effectively converges toward near-optimal configurations by harmonizing global
exploration with local exploitation, proving particularly robust for continuous and nonlinear
optimization problems.

3.3 Simulated Annealing with Machine Learning Assistance (SA-ML)
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The Simulated Annealing (SA) algorithm is a probabilistic optimization technique modeled
after the annealing process in metallurgy, where controlled cooling allows materials to reach
a low-energy crystalline state. The SA-ML variant adopted in this study introduces machine
learning assistance through surrogate-based evaluation.

Beginning with an initial PV layout, the algorithm iteratively generates perturbed
configurations by modifying panel placements or orientations. Each new layout is evaluated
by the Random Forest surrogate model to estimate its “energy,” corresponding to the
negative of the objective function value. A temperature parameter governs the acceptance
probability of worse solutions, allowing the algorithm to escape local minima during early
iterations. As the temperature gradually decreases according to a predefined cooling
schedule, the acceptance of inferior solutions becomes less frequent, guiding the search
toward convergence. The use of surrogate-assisted energy evaluation ensures a substantial
reduction in computational cost while preserving the probabilistic exploration behavior of
classical SA.

3.4 Role of the Surrogate Model in Hybridization

Across all three hybrid algorithms, the Random Forest surrogate model serves as a central
component, approximating the fitness landscape based on a pre-trained dataset of random
and greedy PV layouts. The model inputs include the occupancy grid encoding, irradiance
map, and panel count, which collectively characterize spatial and environmental variations.
By accurately predicting layout performance, the surrogate model substitutes costly direct
solar energy simulations, enabling thousands of evaluations within seconds. This
integration ensures that the hybrid algorithms maintain high computational efficiency
without sacrificing optimization accuracy.

3.5 Comparative Advantage and Overall Workflow

The hybridization of metaheuristics with machine learning enables the proposed framework
to capitalize on the exploratory strength of evolutionary search and the predictive efficiency
of data-driven learning. GA-ML provides superior diversity and adaptability, PSO-ML
ensures rapid convergence through collective learning, and SA-ML offers resilience against
local optima via probabilistic acceptance mechanisms. Collectively, these algorithms
constitute a versatile toolkit capable of efficiently identifying near-optimal PV layouts
across a range of complex rooftop geometries and environmental conditions.

The overall workflow includes (i) dataset generation from random and greedy layouts, (ii)
surrogate model training, (iii) hybrid optimization using GA-ML, PSO-ML, and SA-ML,
and (iv) performance comparison based on energy yield, layout compactness, and
computational efficiency.

4. Results and Discussion

Experiments conducted on Singapore, Rio de Janeiro, Nairobi, and Surakarta demonstrate
the effectiveness of the proposed hybrid framework. The ML surrogate consistently
achieved an R? value above 0.90 with low RMSE, confirming its reliability in
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approximating layout fitness and significantly reducing computational cost. All three hybrid
algorithms (GA-ML, PSO-ML, SA-ML) converged faster than their standalone
counterparts, highlighting the advantage of surrogate-assisted optimization. The efficiency
of each algorithm was calculated using the expression:

n=—"t® _ %100% )

0.9-Ftheoretical

where F'(L) denotes the actual power output obtained from the optimized layout, and
Fincoretical Tepresents the maximum possible power generation under ideal rooftop conditions.
The denominator is scaled by 0.9 to account for realistic system-level derating factors such
as inverter losses, wiring losses, and environmental effects. Thus, the efficiency metric 1
quantifies how close the optimized solution comes to achieving 90% of the theoretical
maximum, providing a practical benchmark for performance evaluation. Results show that
GA-ML achieved the highest performance, with efficiency values above 99.6% across all
cities. SA-ML also performed strongly, achieving ~97.8-97.9% efficiency, while PSO-ML
was comparatively less effective, with efficiency around 86—88%. City-wise performance
indicates consistent robustness of GA-ML and SA-ML, with Singapore, Rio de Janeiro, and
Surakarta showing slightly higher efficiency than Nairobi. These findings confirm that
integrating the surrogate model with metaheuristic algorithms not only accelerates
convergence but also enables near-optimal solar PV layout designs across diverse
geographical and climatic conditions.

Singapore — Max-Packed Hybrid Layout
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Fig. 1 Result for Singapore for GA-ML
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Fig. 2 Result for Singapore for PSO-ML

Singapore — Best SA+ML Hybrid Layout

10

11

1z

Fig. 3 Result for Singapore for SA-ML
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Rio_de_Janeiro — Max-Packed Hybrid Layout
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Fig. 4 Result for Rio De Janeiro for GA-ML

Hybrid best layout (Rio de Janeiro)

Fig. 5 Result for Rio De Janeiro for PSO-ML
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Rio de Janeiro — Best SA+ML Hybrid Layout

Fig. 6 Result for Rio De Janeiro for SA-ML

Nairobi — Max-Packed Hybrid Layout
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Fig. 7 Result for Nairobi for GA-ML
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Hybrid best layout (Nairobi)
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Fig. 8 Result for Nairobi for PSO-ML

MNairobi — Best SA+ ML Hybrid Layout
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Fig. 9 Result for Nairobi for SA-ML
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Surakarta — Max-Packed Hybrid Layout
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Fig. 10 Result for Surakarta for GA-ML
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10
11

1z

Fig. 11 Result for Surakarta for PSO-ML
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Surakarta — Best SA+ML Hybrid Layout
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Fig. 12 Result for Surakarta for SA-ML

City GA+ML PSO+ML Efficiency SA+ML Efficiency
Efficiency (%) (%)
(%)
Singapore 99.71 87.74 97.90
Rio De Janeiro 99.74 87.75 97.72
Nairobi 99.61 86.44 97.84
Surakarta 99.72 87.91 97.91

Table 1: Comparison of Results

The challenge of optimizing solar photovoltaic (PV) panel layouts on irregular rooftops is
a complex combinatorial problem. Genetic Algorithms (GA) are known for their excellent
global search capabilities, making them well-suited for maximizing the number of panels
to achieve full capacity. In contrast, Particle Swarm Optimization (PSO) can be sensitive to
parameter adaptation, which may lead to stagnation if not handled with adaptive inertia.
Simulated Annealing (SA) is better suited for navigating complex, irregular rooftops and
obstacle-laden environments, though this often comes at the expense of a slower
convergence speed.

Given these trade-offs, a hybrid GA-SA solution could prove to be the most practical
approach. This combination leverages GA’s robust global exploration while using SA’s
superior ability to find good solutions in difficult, constrained spaces. The practical
relevance of such an optimized system is significant, as efficient solar rooftop
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configurations translate to enhanced household-level energy independence and are crucial
for helping countries worldwide meet their ambitious renewable energy goals.

4. Conclusion

This study demonstrates that integrating machine learning surrogate models with
metaheuristic algorithms provides a highly efficient approach for solar photovoltaic rooftop
layout optimization. The surrogate model accurately predicted layout fitness with R?>0.90,
enabling faster convergence and reducing computational effort compared to standalone
optimization methods. Among the hybrid frameworks, Genetic Algorithm with surrogate
learning consistently achieved near-optimal performance, with efficiency exceeding 99.6%
across diverse locations such as Singapore, Rio de Janeiro, Nairobi, and Surakarta.
Simulated Annealing with surrogate support also performed strongly, while Particle Swarm
Optimization yielded comparatively lower efficiency. The proposed framework effectively
balances accuracy and computational efficiency, making it well-suited for large-scale urban
PV planning. By approaching practical upper limits of rooftop PV efficiency, this work
highlights the potential of surrogate-assisted optimization in accelerating renewable energy
deployment and contributing to sustainable energy transition.
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